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1. Introduction

In all nonlinear oscillators, the growth of the amplitude of the oscillation is ultimately
curbed by back reaction of the growing signal on the agent powering the oscillation. In the case
of the semiconductor laser the back reaction consists in the increased recombination rate of the
excess carriers responsible for the laser action. At any point in the device, the increase in
recombination rate over its normal equilibrium value is proportional to the local power density
of the laser field. This depletion of the carrier density diminishes the gain of the device,
providing the negative feedback that ultimately stabilizes the laser output at a self-consistent
operating level. Since to a good approximation the increase in recombination rate is a local
effect, the excess carrier density profile will be nonuniform, reflecting the intensity distribution
of the mode, but this non-uniformity is counteracted by carrier diffusion.

Thus one has a nonlinear problem to solve: Maxwell’s equations with carrier density
dependent dielectric constant, together with the diffusion equation with field intensity dependent
recombination rate, and with a steady source term reflecting the carrier injection process in the
form of an assigned current. One can go back further and trace that current back to a boundary
value problem for the voltage distribution that sets up that current,' making extensive use of the
computer. We stop short of this step since it is difficult to see how it can affect the results in a
major way.

The method we use to "solve" the simultaneous nonlinear equations is conventional: the
electric field satisfying Maxwell’s equations with a complex dielectric constant (depending on
carrier density) and the carrier density are expanded in a series of cavity modes, with amplitudes

that are functions of time. Then the condition for a steady state is written down (in the steady

*H. Suhl is Professor of Physics at the University of California, San Diego. He was supported in this work by
USAF Contract F04701-88-C-0089.




state, the electric field varies with time as a superposition of sinusoids, whereas, to a very good
approximation, the carrier density is time independent). The steady state condition yields a
sequence of recursion relations for the Fourier coefficients, which is broken off at an early stage.
This is justified if the field-induced recombination rate (the ultimate source of the nonlinearity) is
small compared with the equilibrium recombination rate.

There is a large body of literature on this subject.3-6 Most of it addresses specific issues
of diode laser operation. In this paper, we analyze only the most primitive “toy model” that still
exhibits the spatial hole burning phenomenon in analytic (as distinct from purely computational)

form.
II.  Analysis
Let n denote the excess carrier density. We assume that the diffusion equation for n can
be
o T DV - 2 20F ¢
ot ) T

where J is the driving current (in general a function of position), & is the thickness of the
active layer, a is a coupling constant to the electromagnetic field and D is the diffusion
coefficient. (The sign of J is as shown, because carriers are being generated by it.) F° is
the time averaged square of the total electromagnetic field (time averaged, because the carrier
concentration is unlikely to follow variations at optical frequencies). If n were the roral
carrier density, Eq. (1) would have to include higher powers of n inasmuch as the
recombination process is bimolecular and possibly also has an Auger component that is cubic
in n.? However, if nis regarded as the excess carrier density needed to push the system over
the threshold to its operating point, and that excess is not too great, equation (1) is adequate.
To begin with, consider a cavity consisting of two infinite parallel plates a distance a apart,
with the E-field polarized parallel to the plates. For this polarization direction, and in the
absence of injected carriers, there can be resonances at a series of frequencies: the lowest
isat w = x/(aey), and the higher ones are integral multiples thereof. Here ¢, is the
real part of the dielectric constant of the unactivated medium. In the presence of the non-




linearity implied by the last term in Eq. (1), the steady state cannot involve one single mode
alone. We shall restrict the argument to a superposition of two modes. In the presence of
the current J, the dielectric constant becomes €2 = € + [Bn + i(10 — 11,2n)] = € + i€”, to
first order in the excess carrier concentration n. Here 4, denotes the intrinsic loss in the
cavity, and 7;; the gains in the two modes, per unit carrier concentration. For simplicity
we assume that the real part of the dielectric constant is the same for both modes. The
equation for the E-field for each mode is

O’E _ eud’E
8z2 = a2

where z is the distance across the cavity. For real € it has a solution of the form F(z)e™!.
When € is complex, but its imaginary part is not too large, the solution has the form
F(z,t)e™*, where F can be chosen real, and where the rate of variation of F is slow

compared with w, that is (1/F)dF/dt € w. Then we have two equations (F being real):

8*F , ., OF
-87 = —w2€ ﬂF - wze ﬂ.—a-t— (23.)
e'%—f— +we"F=0 (2b)

where the second time derivative of F' has been neglected. Substituting (2b) into (2a)

gives an equation for the z-variation of F'

errz
— +w? (e’+—)F=0.

¢
However, (2b) has a solution that decays or grows indefinitely depending on the sign of
€’. To determine a steady state, proceed as follows: Take the complete steady state of the

ﬁeid té have the form

E= F; sin (1:') et + Fysin (2;;‘2-) g2iwt
and from now on measure distance in units of a/x, defining { = =z/a. The ‘dielectric
constant depends on E. Evidently a steady state would be possible if €’(E) - E = 0, for
each of the two modes. Two equations for the amplitudes F; and F; are then obtained by

using trigonometric identities to segregate out terms that go like sin(7z/a) exp iwt and like

3




sin(27z/a) exp(2iwt) and equating them to zero separately. The first step is to express ¢’
in terms of a solution of Eq. (1).

Equation (1), in the present one-dimensional case is, in the steady state,

-n d’*n —_
- (4 — — I____ 2
J - +DdC2 afFn

= -'T_" + D’Ez- — a[F?sin? ¢ + F2sin?2(]n (3)

where D’ = Dx?/a? and J' = J/6.

From this, and from the fact that sin?6 = (1/2)(1 — cos26), it is apparent that a
consistent steady state is reached if it is assumed that n is a Fourier cosine series of the
variable 2rz/a:

n =mng+n;cos2( +nycosd( +...
We substitute this into (3), use sum and difference formulae for the cosine functions, and

equate coefficients of the resulting trigonometric functions. This gives

1
J1 = [1+7a(FE+ F)ne - ‘-)-Taanl - %‘ranznz

0 = —raF’ny+ [1 +47D" + 1 (Ff + %F.f)] n; — %-raanz
0 = —raFiny,— éraanl + [1 + 167D + 1 (%Ff + Fzz)] n,. (4)

In this process, the sum formulae also generate cos 6¢ terms, but these are discarded.
They could be taken into account by including them in the ansatz for n. Continuing in
this manner, one would eventually establish the full Fourier series for n. Hopefully this
converges sufficiently rapidly so that the first few terms suffice.

Equations (4) are three simultaneous linear equations for ng, n;, n,, which may be solved
in terms of F? and F?. If the nonradiative recombination rate is fast compared with the

induced rate, then TaF? is small, and an approximate solution to first order in 7aF? should

suffice:

np = Jr(l—-A-B)

Ano
(1+47D")

n; =

4




Bno

n = emm———— 3)
T A+167D) 5)
where we have set
A = taoF}
B = rtaF:.
Turning now to the steady state requirement €'E = 0, mode by mode, we need
nsin{ = (ng+ny;cos2(+nycos4(+...)sin(
1 . ..
= (no - §n1) sin { 4+ terms in sin 3¢ etc.
and sfmilarly
nsin2( = (no - %m) sin2( +....
So the steady state equations are
1
Yo = no—inl) = 0
o — (n _1 ) = 0
Yo — 72|70 2722 =
or, from (5),
a1 = [qgA+ B
92 = [A+ qB] (6)
where
G122 = [ e ]
T FIne)
are assumed positive (i.e. gain rather than loss) and
1
q=1+5(1+4rD)", @=1+ é(l +167D)"1 .
Equation {6) may be solved for 4 and B:
A = q2491 — g2
192 — 1
@192 — 01 -
B = ——= i
Qg —1 (@)
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This solution, based on the approximate solution (5) of Eq. (4), breaks down when the two
inequalities, q1g1 > g2 and q2g2 > g1, are inconsistent. Evidently, they are consistent as long as
q1q2 > 1. For example, with 4tD" = 1, we have both q’s approximately equal to two, so that the

inequalities are satisfied.
The energy density at position ( is
W = Asin®( + Bsin®2(.

Figure 2(a) shows W for equal gains in the two modes, as a function of { and of r = 47D/,
which is effectively the ratio of recombination time to the time needed to diffuse through
about one wavelength of the lower mode. Figures 3 and 4 show the results for unequal
gains, as indicated in the captions. Figures 5 through 7 show corresponding carrier density

variations.

IT1. Generalization to More Realistic Structures

Consider the geometry of Fig. 8 representing a one-stripe laser diode. A very similar
procedure may be used in this case in which the current J, and therefore the dielectric

constant is a2 function of z. We change that variable to £ = z=/a. The diffusion equation

is then
Pn  8n —
_ r - N LD WP -
rJ'(€) n+D (3§2+6C2> 2ar’E*n (8)
and we write _ , ' ‘
n = ng(£) + n1(€) sin  + nz(€)sin2¢ + ... .. (9)
The equation for the E-field is
PE O&FE p mOPE _ (epa®\ O’E
ae Tag Tl Ez—-+<;‘zz? I (10)

Here g is the background dielectric constant, and

pa’

n(&,¢) = (3‘) (B = im.2)n(£,€) + %)

6



81=2g,

g1

Fig. 1 In the shaded region of the g, — g, plane, the simple theory (non-radiative recom-

bination rate >> radiative rate) applies.




(2)

(b)

Fig. 2 Total energy density in the two lowest modes of a parallel plate cavity, as a function
of distance z across the cavity and of r, the ratio of recombination time to the time
needed to diffuse through roughly one wavelength. Here the two modes have equal

gain, and are always in the shaded region of Fig. 1 no matter how large r: (a) view

from the side r < 0. (b) view from large r.




Fig. 3 As in Fig. 2, but with gain g, in higher frequency mode 1.2 times g;. Maximum
r allowed in the simple theory is now .375. (a) and (b) views from r < 0 and from

r > .375.
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Fig. 5 Carrier density versus z and r in the parallel-plate cavity. g1 = g2-

Fig. 6 Same as Fig. 10 but with g, =1, g, = .8.
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\kﬁ@:\@'\\‘\

N

(b)

Fig. 7 Same as Fig. 10, but with g; = 1, g, = 1.2. (a) and (b) are front and rear views.
Note that the maximum r for which n is still positive is larger (up to r = 1.3) than
the maximum (.375) allowed to ensure positive squared field amplitudes. The latter

figure of course governs.
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paralle] plates
inactive region

injected carriers

Fig. 8 Coordinate system for a one-stripe laser diode.
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is the localized deviation from € induced by the carrier density. For the steady state, we
assume a solution of (10) in the form
E = et fy(€)sin ( + €' f2(£) sin2(,

where w; and w, will differ slightly from wo = cr/(a /&) and 2wo. In the linear limit,
i.e well below threshold, the functions fi(€) and f,(€) describe the transverse variations
of two characteristic modes of the structure that go with the z variations sin ¢ and sin 2¢,
respectively. Here we shall discuss only two possibilities: (a) fi = lowest mode even in §;
f, = lowest mode odd in §; (b) both fi and f; lowest even modes. In exactly the same way

as for the parallel plate cavity, we find
1 twit oo 1 twat o3
nE = (no - Enl) fie®t sin¢ + (no - §nz) foe**sin2( + ...

where f; and f; satisfy

%}i;— + [([3 —i71) (no - %Th) - z."1’0] (E%) h = [1 B (%:-)2} h

ezg . {( B— i) (no- %m) - m] (‘;ig) fr = [4 - (:-’-2)2] £z (11)

Also, substituting (9) in (8), we find

2
() = [1 tor(f+ 1) - rD'-?—] no — s f2na — gor finy

o€z 2
2 2 1 2 ! 162 1 2
0 = —atfine+ 1+a1’(f1+§f2)+4TD —TDEE,; nl—--éa'rfzng
2 1 2 1 2 2 ’ 162 9
0 = —a‘rfzno—-iarflnl-{— 1+ar(§f1+f2)+16‘rD —'rD-a—é-2 n,. (12)

As before, we discuss these equations for ponradiative recombination time short cornparéd
with radiative recombination time, i.e. a7 fi; € 1. Then the field terms in Eq. (12) can
be dropped, except where they compete with tixe diffusion term, i.e. inside the square
parentheses. There they could be important for multistripe lasers. If we were to drop all
field dependent terms, the equation for ng would be

6277.0

TJ,(é) = ng— TDI 662




whose solution is

np X /d{'J’({’) exp (:ljb—:,—_rﬂ)

and the exponential tends to fuzz the edges of the current profile. So if two stripes are less

than a distance v/ D' x a wavelength apart, they would tend to act like a single stripe. If

the field terms are retained in the parenthesis, they will have (very roughly) the effect of

replacing 7 by 7/[1 + T X an average of (fZ + f2)]. It is plausible to suppose that this is

the most sensitive spot at which the fields affect the carrier concentration, and so we shall
disregard terms in higher powers of 'rd f? everywhere except this place.

We begin by considering this problem for D’ = 0. Then in the same approximation as

for the parallel plate problem

no = 7J(E[1 ~ar(f+ 7))
ny = arfing =ar?J(€)f2
ng = arfing= arJ'(€)f? (13)

to first order in a7 f2. Equations (11) now become

2 2
S -0 1= =) ()5 - o
2 (‘)2
%g)iz + [(ﬁ — iy )rJ'(€) (1 —arfi- garfg)] (w_é) fo = o2fs (14)

where 012 = —(1 + i7,)(wy.2/wo)?. We “solve” these in a manner similar to that for the

parallel plates, except that we have here no comparably convenient sum and difference formulae
for the eigenfunctions of the J'(¢) potential. Let 15,(z) be the lowest and next to lowest

eigenfunctions of that potential, satisfving

Piny (i3 o
d.fg'l + (“Tg} BT (E)oa = Ao.1%0,1

and going to zero at { = £
Suppose that J’ is an even function of £. Then the eigenfunctions are either even or

odd about ¢ ='O, and the lowest one is even. the next to lowest is odd. Assume, with case

15




(),
fi(§) = pvo(€) + terms in higher even eigenfunctions
f2(§) = q¥1(€) + terms in higher odd eigenfunctions (13)

where p and g are constants. Next we expand f7 etc. in a series of even eigenfunctions,

and keep only the first term. If the eigenfunctions are normalized
TOUAQF = phuve(©)+.-i TEHHEOPAE) = pehntol€)
JEOUROP = Chati(@+..; TOUAOFAE =Pdhuta(e),  (16)
where
by =Ty [56sde, ha= 0y, [iwtedde = b, hn =T, [ iutde

and where J'(§) = J.,j(£), and J is the maximum in the current distribution. We further

write

J(€)/12(6) = Paraw(€), where g1z = [ I3 de.

The condition for a steady state is that the imaginary part of the potential term should

vanish in both Egs. (11). This gives

3
[§h11P + huQ] = - 71::.]1,'1 = G,
3 Yo -
[huP + §h22Q] = g2 Tar = G, (17)

- where P = 1/2 atp® etc. These may be solved for P and Q and presumably give very
similar behavior with respect to the transverse dimension that we had for the longitudinal
dimension in the parallel plate case. We have
(382261 — h12G)
A

0 = (%huG'z.;‘hlzGl) (18)

with A = (9/4)hy1 ks — k2, which is always positive.
16 .




We now include diffusion. We note that the operator d*/d¢* does not change the
parity of a wavefunction. We may consistently assume that ng, n,, n, expand in even
eigenfunctions, and we assume that the lowest of these, %, dominates. (This is a little
different from the (-dependence : In the ¢ direction the densities persist right to the end
plates, whereas in ££ directions the n’s fall off to zero, like J’. So in the ¢ direction we
needed functions that were finite at the endpoints, the cosines in this case.) This means
that a term such as D'd®no,; /dé? may be replaced by ng, 2D’ [ déprd* iy [dE? = ~Dngy ,,

where D is positive because the curvature of ¥, is negative The only effect this would have

“on Egs. (13) is to replace 7 by 7/(1 +7D) everywhere. As far as diffusion in the €-direction

is concerned, the solution (18) therefore remains intact, except for that replacement in the
definitions of P, Q, and the G’s. However, diffusion in the ¢ direction is another matter.
Just as in the case of the parallel plates, it has the effect of replacing the factor 3/2 in the
first of Eq. (18) by ¢z, and in the second of (18) by ¢.

To plot the energy density in the cavity as a function of £ and ¢ we need the two lowest

eigenfunctions. Suppose that J(£) has a sech?¢ variation. This has the advantage that the
exact eigenfunctions are known.” We write (0? / w3)/ (x) = n1,2sech?2£. The lowest eigen-

1\Y?2 1
do=(m+3) -3

and the corresponding (unnormalized) eigenfunction is

value is

Yo = (sechg)®.

The next one has

1 1/2
A= (772 + Z) -

o) &

with
¥, = siohé(seche)s+l
= sinh§y,

it being assumed that 7 is large enough to support this mode. For convenience, chose
7 = 15/4. Then Ao = 3/2 and A\; = 1/2. Then numerical evaluation gives hy; = 57/32.

.17




hia = hyy = 7/32, g1 = 2/3, g2 = 1/3. The local energy density is
W = Psech®¢ sin® ¢ 4+ Q sinh® ¢sech®¢ sin? 2(. (19)

Figures 9 through 11 show various cases, with f; and f; the lowest modes of opposite parity.
Figures 12 and 13 refer to the case of f; and f; both of even parity.

When r becomes too large (which effectively causes the field induced recombination
rate to dominate), this simple theory dependent on the convergence of a mode expansion
breaks down. This does not necessarily mean that no steady state exists. If it does exist,

‘nonperturbative solutions for the steady state must be sought.

18




Fig. 9 Energy distribution with f, even, f, odd, in a single stripe structure. Energy

density versus x (dimension transverse to the stripe), and z. Here G, = 3G; and
r = 0. (In the text, this implies that the 4’s must be different for the two modes.

otherwise the relation between G; and G, would be predetermined. Thus for 4 = 0

in both modes we would have G; = 2G),).

Fig. 10 As in Fig. 5, but with G, = 2G; and r = 0.

19




QO OO

Fig. 11 As in Fig. 5, but with G, = G,, and r = 5. The reason \‘why the holeburning
o
here is generally more marked than in the parallel plate cavity is that the important

overlap integrals of the two modes with each other and with the current distribution

are different.

Fig. 12 f; and f, both the lowest even modes for the single stripe case, for equal gains

and r = 0.
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Fig. 13 Same as Fig. 12, but with r = 5.
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